روشهای تکراری شکافت هرمیتی و هرمیتی – کج برای حل دستگاه معادلات غیر خطی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
- نویسنده رضا رخ فروز کیسمی
- استاد راهنما داود خجسته سالکویه
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1393
چکیده
چکیده فارسی روشهای تکراری شکافت هرمیتی و هرمیتی – کج برای حل دستگاه معادلات غیر خطی رضا رخ فروز کیسمی روش شکافت هرمیتی و هرمیتی-کج hss)) که توسط بای و همکارانش ارائه شده است یک روش تکراری کارا برای حل دستگاه معادلات خطی معین مثبت تنک می باشد . اخیرا بای و همکارانش با ترکیب کردن این روش و روش نیوتن روشی به نام newton-hss را برای حل دستگاه معادلات غیر خطی تنک با ماتریس ژاکوبی معین مثبت ارائه کرده اند . در این روش ، از روند تکراری نیوتن برای تکرار حلقه بیرونی دستگاه و از روش تکراری hss برای تکرار حلقه داخلی دستگاه استفاده شده است . در این پایان نامه ، این روش را با جزئیات کامل بررسی نموده ، همگرایی رو ش newton-hss را مطالعه نمودهو این روش تکراری را با روشهای newton-lu و newton-gmres مقایسه می کنیم . در پایان نتایج عددی مختلفی در خصوص کارایی روشهای بررسی شده ارائه می دهیم. کلید واژه: شکافت هرمیتی و هرمیتی –کج ، معادلات خطی، ممعادلات غیر خطی، معین مثبت ، تنک ، روش نیوتن
منابع مشابه
روش های شکافت هرمیتی - هرمیتی کج برای حل دستگاه معادلات خطی معین مثبت غیرهرمیتی
حل بسیاری از مسایل کاربردی در علوم ومهندسی منجر به حل دستگاه معادلات خطی ax=b می گردد که ماتریس a معمولا یک ماتریس بزرگ است. حل این دستگاه با استفاده از روش های مستقیم مقرون به صرفه نبوده و بعضا غیر ممکن است. امروزه از روش های تکراری برای حل این گونه دستگاه ها استفاده می شود. روش های تکراری مختلفی برای حل عددی این دستگاه وجود دارد که با توجه به خواص ماتریس ضرایب دستگاه، می توان آن ها را به کار ...
روش های شکافت هرمیتی-هرمیتی کج اصلاح شده برای حل دستگاه معادلات خطی معین مثبت غیرهرمیتی
بسیاری از مسائل در علوم و مهندسی منجر به حل دستگاه معادلات خطی ax=b می شوند که در آن a یک ماتریس تنک معین مثبت غیرهرمیتی با ابعاد بزرگ است. همانطور که می دانیم روش های تکراری شکافت هرمیتی و هرمیتی کج (hss) و نسخه تقریبی آن (ihss) برای حل این گونه دستگاهها بسیار مناسب هستند. لی و همکارانش در سال 2007 روشهای تکراری hssیک طرفه(lhss)و نسخه تقریبی آن(ilhss) را ارائه نمودند. در این پایان نامه روش های...
15 صفحه اولروش های تکراری شکافت هرمیتی و هرمیتی-کج اصلاح شده پیش شرط سازی شده برای دستگاه معادلات خطی متقارن مختلط
در این پایان نامه روش تکراری شکافت هرمیتی و هرمیتی-کج اصلاح شده پیش شرط سازی شده توضیح داده می شود.و با چند مثال کارایی آن بررسی می گردد.
15 صفحه اولروشهای تکراری جدید مبتنی بر شکاف هرمیتی و هرمیتی اریب برای حل معادلات ماتریسی خطی
در این رساله دو روش مبتنی بر شکاف هرمیتی و هرمیتی اریب برای حل معادلات ماتریسی خطی به شکل $axb=c$ و $ax+xb=c$ ارائه می شوند. در هر یک از این روشها با به کار بردن تکرارهای تو در تو، ابتدا در هر تکرار داخلی یک معادله ماتریسی را حل کرده و جواب این معادله داخلی را به عنوان تقریبی از جواب معادله اصلی در نظر گرفته و تکرارهای بیرونی را تا رسیدن به جواب معادله ادامه می دهیم. روش اول...
روش تکراری شکاف هرمیتی وهرمیتی کج برای حل معادلات ماتریسی خطی
روشی که در این پایان نامه بر روی آن بحث می کنیم یک روش تکراری دو مرحله ای است که برای اولین بار توسط بای وهمکارانش در سال ( 2003 ) ابداع شد. این روش برای حل دستگاه معادلات خطی معین مثبت غیر هرمیتی استفاده می شود همچنین بای و همکارانش ر.ش تکراری شکاف نرمال وهرمیتی کج را ارائه کردند.فصل اول پایان نامه به تعاریف، قضایا و معرفی روش در فصل دوم به مروری بر روش تکراری می پردازیم. در فصل سوم روش...
روش تکراری شکاف نرمال و هرمیتی اریب و تعمیم های آن برای حل دستگاه معادلات خطی
دستگاه ax=b را در نظربگیرید که در آن a یک ماتریس تنک بزرگ و معین مثبت غیر هرمیتی است. هدف از انجام این پایان نامه معرفی روش تکراری شکاف نرمال و هرمیتی اریب و بیان تعمیم های آن است که مبتنی بر ایجاد یک شکاف نرمال و هرمیتی اریب در ماتریس ضرایب می باشد. روش تکراری hss که مبتنی بر ایجاد شکاف هرمیتی و هرمیتی اریب در ماتریس ضرایب است اولین بار در سال 2002 برای حل دستگاههای خطی غیر هرمیتی و معین مثبت...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023